
POTSHARDS : Storing Data for the Long-term Without Encryption

Kevin Greenan Mark Storer Ethan L. Miller Carlos Maltzahn

Storage Systems Research Center
Computer Science Department

University of California, Santa Cruz

Abstract

Many archival storage systems rely on keyed encryption
to ensure privacy. A data object in such a system is ex-
posed once the key used to encrypt the data is compro-
mised. When storing data for as long as a few decades
or centuries, the use of keyed encryption becomes a real
concern. The exposure of a key is bounded by computa-
tion effort and management of encryption keys becomes
as much of a problem as the management of the data the
key is protecting. POTSHARDS is a secure, distributed,
very long-term archival storage system that eliminates the
use of keyed encryption through the use of uncondition-
ally secure secret sharing. A(m,n) unconditionally secure
secret sharing scheme splits an object up inton shares,
which provably gives no information about the object, un-
lessm of the shares collaborate.

POTSHARDS separates security and redundancy by
utilizing two levels of secret sharing. This allows for
secure reconstruction upon failure and more flexible stor-
age patterns. The data structures used in POTSHARDS
are organized in such a way that an unauthorized user
attempting to collect shares will not go unnoticed since it
is very difficult to launch a targeted attack on the system.
A malicious user would have a difficult time finding
the shares for a particular file in a timely or efficient
manner. Since POTSHARDS provides secure storage
for arbitrarily long periods of time, its data structures
include built-in support for consistency checking and data
migration. This enables reliable data churning and the
movement of data between storage devices.

Keywords : Data Security, Distributed Storage, Secure
Storage, Survivable Storage

1 Introduction

In today’s computing environment, more and more data is
being migrated from hard copy to digital form. This trend
is catalyzed by a number of motivations revolving around
economic efficiency. Digital data offers many economic

advantages compared to traditional, tangible publishing
methods such as books, magazines, and films. Digital data
is often much easier and cheaper to transport and store
in comparison to traditional mediums such as paper and
ink based printing. In many cases, digital content is also
cheaper to produce. Many forms of traditional content
delivery such as books and magazines are already created
and edited as digital data; thus the production of a hard-
copy simply adds additional costs.

Despite the advantages of digital content, tangible hard-
copies of data do offer at least one major advantage over
digital data. Archivists have, over many years, developed
a diverse set of strategies for preserving hard-copies of
data. Additionally, archivists have become very adept at
judging degradation of hard-copy media through empiri-
cal observation and testing. The relative newness of com-
puter data presents many challenges as digital archivists
develop the tools and techniques to preserve digital data.

The access patterns of archival storage are distinctly
different from general purpose storage. Archival stor-
age is heavily write-centric—information is written to an
archive and it may be a long time, if ever, before that data
is accessed from the archive. An example of this would
be a collection of business documents that must be pre-
served for legal reasons even though they are rarely, if
ever, requested. This is the exact opposite of the model
of shared storage for a distributed application or content
distribution in which the access patterns would be heav-
ily skewed towards reading or editing data For example,
a web page may be written once to a storage system but
read many times by many different clients. Additionally,
archival storage is less concerned with throughput and la-
tency than it is with ensuring data persistence, integrity
and security.

This paper introduces the POTSHARDS (Protection
Over Time, Securely Harboring And Reliably Distribut-
ing Stuff) project, an archival storage system designed
for a computing environment where relatively static data
must be preserved for an indefinite period of time. POT-
SHARDS separates data redundancy and data secrecy and
utilizes a geographically distributed array of network at-



tached storage devices, calledarchives. The first phase
of data storage involves the use of a secret sharing algo-
rithm to ensure data secrecy. This avoids the problem in-
troduced by keyed cryptography where the key represents
a single point of failure which could render data recovery
infeasible. This also helps avoid the problem of preserv-
ing historic keys associated with an archive of encrypted
files. The second phase of data storage in POTSHARDS
utilizes a data redundancy algorithm to ensure data per-
sistence. The longevity of the data within the system is
ensured through the redundancy inherent to secret sharing
schemes and to aggressive consistency checking.

In order to understand the methods we propose to use
in POTSHARDS, an elementary understanding of secret
sharing is necessary. Although we chose to not bound
POTSHARDS to use any single secret sharing algorithm,
two popular algorithms will be quickly explained. We as-
sume that POTSHARDS will be equipped to use any se-
cret sharing scheme.

A rather simple approach to sharing ab-bit secret
data block is to generaten− 1 randomb-bit blocks and
XOR the blocks to the secret data block as follows:P =
rand1

L

rand2
L

· · ·
L

randn−1
L

secret. Then−1 rand
blocks and the resultP could be distributed amongn par-
ticipants and thesecret block could be tossed away. In
this case, an attacker would need alln blocks in order to
reconstruct the secret. Any number of the blocks less than
n will not reveal anything about the secret. This scheme
works very well for security-centered storage.

Shamir’s secret sharing scheme is often called an
(m,n)-threshold scheme [12, 8], sincem ≤ n of the origi-
naln shares are needed to reconstruct the secret, wherem
is chosen when the shares are created. Shamir’s scheme is
based on polynomial generation and interpolation. First, a
random polynomial of degreem−1 is created by generat-
ing m−1 random coefficientsc1,c2, . . . ,cm−1 and placing
the secret at coefficientc0 in the polynomial.m partici-
pants can collaborate to generate the interpolation poly-
nomial Pm−1(x). The secret is revealed by evaluating
Pm−1(0). If fewer thanm participants collaborate, then the
secret will not be revealed, since at leastm of the shares
are required to reconstruct the secret.

As of now, the first level of splitting requires a se-
cret sharing scheme similar to the two schemes covered.
The second level of splitting can be use any form of re-
dundancy, such as Reed-Solomon encoding or Shamir’s
scheme. Obviously, using the XOR-based secret sharing
scheme would not be sufficient for the second level of
splitting. As we will show, each object written to POT-
SHARDS is subject to two levels of splitting, wherefrag-
ments are created at the first, secure split andshards are a
product of splittingfragments for redundancy.

2 Related Work

The design concepts and motivation of the POTSHARDS
project borrow from various research projects. These
projects range from general purpose distributed stor-
age systems, to distributed content delivery systems, to
archival systems designed for very specific uses.

A number of systems such as OceanStore [5], Far-
Site [1], and PAST [9] rely on the explicit use of keyed en-
cryption to provide file secrecy. While this may work rea-
sonably well for short-term file secrecy it is less than ideal
for the very long-term storage problem that POTSHARDS
is addressing. Further evidence that POTSHARDS is de-
signed for a different application can be found in the de-
sign choices made by the authors of the systems men-
tioned previously. For example, in OceanStore straight
replication was chosen in favor of erasure coding in order
to provide for better read performance. In contrast, the
design emphasis on POTSHARDS is reliability for very
long-term storage.

Another class of storage projects that use distributed
storage techniques but rely on keyed encryption for file
secrecy do not provide any method for insuring long-term
file persistence. These systems, such as Glacier [4] and
Freenet [3] are designed to deal with the specific needs
of content delivery as opposed to to the requirements of
long-term storage. An archival storage system must ex-
plicitly address the problem of insuring the persistence of
the system’s contents.

Another class of systems is aimed at long-term storage
but with the explicit goal of open content. Systems such as
LOCKSS [7], and Intermemory [2] are designed around
preserving digital data for libraries and archive where file
consistency and accessibility are paramount. These sys-
tems are developed around the central idea of very long-
term access for public information and thus file secrecy is
explicitly not part of the design.

The PASIS architecture [13] and the work of Subbiah
and Blough [11] avoids the use of keyed encryption by us-
ing secret sharing threshold schemes. While this prevents
the introduction of the singular point of failure that keyed
encryption introduces to a system, the design of these sys-
tem only use one level of secret sharing. In effect this
combines the secrecy and redundancy aspects of the sys-
tems. While related, these two elements of security are, in
many respects, orthogonal to one another. Combining the
secrecy and redundancy aspects of the system also has the
possible effect of introducing compromises into the sys-
tem by restricting the choices of secret sharing schemes.
By separating secrecy and redundancy, an implementation
of POTSHARDS is able to utilize a security mechanism
optimized for redundancy or secrecy.



3 Design Goals

3.1 Assumptions

One of the motivating ideas of the POTSHARDS project
is the need for secure, very long-term storage. To this
end certain assumptions are made out of the understand-
ing that very long-term storage must take into account ad-
vances in computing technology. These advances in tech-
nology are difficult to predict, but POTSHARDS is made
immune to them by specifying policy as opposed to mech-
anism. Five key policies are outlined below along with the
assumptions related to the mechanisms that enforce the
policy.

The first policy is related to authentication. POT-
SHARDS assumes that authentication is provided by the
host system. The mechanism for this policy may be as
simple as a security guard that verifies the identity of a
user or it may be a much more advanced authentication
system using cryptographic primitives. By specifying pol-
icy instead of mechanism this detail is left to the imple-
mentation. Part of the advantage of assuming that the sys-
tem includes correct authentication is that, in a very long-
term storage system, the file lifetimes may be far longer
than the effective lifetime of a user account. For exam-
ple, an employee of a company may store an important
document in POTSHARDS, but it is unlikely that the user
will still be a valid employee decades later. In this sce-
nario, file ownership runs the risk of becoming little more
than a historical side-note of file origins. The contents of
POTSHARDS are designed to be protected through secu-
rity policies that designate security clearance. This allows
much of the problem of file access to encapsulated in the
authentication layer.

The second policy is related to network traffic. POT-
SHARDS assumes that all communication between nodes
in the system is secure. While keyed encryption is a weak-
ness for long-term file storage, encryption is very effective
for securing network traffic; network traffic might be se-
cured through the use of session keys as is done in SSL.
The nature of keyed encryption makes it very useful for
short-term security of replaceable data. For example, if
the session keys of a secured communication are lost, it
is a relatively straightforward procedure to generate new
keys and restart the communication. In contrast, if the en-
cryption keys for an encrypted file are lost it may not be
possible to recover the file in a timely manner.

The third assumption is based on the nature of comput-
ing technology. POTSHARDS assumes that failures will
occur in the system. While most systems take into con-
sideration some level of disaster recovery, the very long-
term nature of POTSHARDS and unpredictable growth of
technology dictate that the system must be designed to ac-
commodate the failure of any of its subsystems. Failures

might include catastrophic failure of part of the system or
Byzantine failures caused by a comprised component of
the system.

The fourth assumption is that POTSHARDS is de-
signed expressively for use as an archival storage system
and thus places its design emphasis upon longevity and
security. It is not designed for interactive use as a low-
latency file server. The design of POTSHARDS largely
considers performance in the interactive time-scale a moot
point. A likely usage scenario could include a user re-
questing a file to be delivered at a later time when pro-
cessing has completed. When faced with a design com-
promise POTSHARDS will opt in favor or longevity and
security over throughput speed.

Finally, data may be exposed if all or a subset of the
archives collude. In the case that all of the archives col-
lude, it is possible to expose all of the information stored
by POTSHARDS. The archive collusion property is both
necessary and potentially dangerous. When an authorized
subject requests a particular object, the archives holding
the shards for that object must collude, which must result
in a properly reconstructed object. On the other hand, it
would be unfavorable to have archives unexpectedly col-
lude. In the case of unexpected collusion, we assume
an archives main interest is colluding only when an au-
thorized subject requests an object. In other words, an
archive would gain very little by fulfilling unauthorized
requests.

3.2 Security and Replication

Storing data securely is one of the most important aspects
of a long-term archival storage system, and keyed encryp-
tion is a common method of storing data securely. Unfor-
tunately, given the lifetime of the data being stored in an
archival storage system, keyed encryption may not be suf-
ficient, due to the single point of failure introduced when
encrypting with a key. Keyed encryption relies on the
computational effort required to determine the key. Given
enough time and computing power, an adversary might
be able to compute the key for a given set of data. Often
times advances in technology drastically reduce the time it
takes to obtain the encryption key. For example while the
DES standard using a 56-bit key was considered secure in
1977 it was only 22 years later that a cooperative effort
managed to locate a decryption key in less than twenty-
three hours. [10] Even 128–256 bit symmetric keys might,
at some future time, be trivial to break using as-yet undis-
covered algorithms, quantum computers, or biologically-
based computers, among other possibilities.

Some may argue that new encryption algorithms may
be applied as the old ones are broken. Unfortunately, ev-
ery time a new algorithm is applied, all data in the system



Fragment 1

Fragment 2

Fragment ns

Shard (1, 2)

Shard (1, na)

File Root Fragment Nodes

Last Checked

Location

Shard Nodes

Shard (2, 2)

Shard (2, na)

Last Checked

Location

Scheme

Hash

Hash

Hash

Shard (1, 1)

Shard (2, 1)

Hash

Hash

Hash

Hash

Hash

Hash

Hash(file)

Figure 1: Shard information such as integrity data and
location stored in a tree data-structure.

must be re-encrypted, which is a potential housekeeping
nightmare.

In contrast, it is possible to provably store the data se-
curely using secret sharing. Instead of relying on com-
putational effort and the latest encryption algorithms, we
can rely on the fact that an adversary would need to collect
all of (or a subset of) the shares. In addition, shares can
be distributed such that an adversary would have trouble
effectively finding all of the shares and would not go un-
noticed while launching an attack on the storage system.

Systems such as PASIS [13] combine security and re-
dundancy using general threshold schemes. In this case,
an object will be split inton shares, which are then given
out to n shareholders. If anym shares are recovered, the
original object can be reconstructed. Thus, security is
accomplished by handing the shares ton trusted share-
holders and data redundancy is accomplished by requiring
only m of then shares for reconstruction. In contrast, we
aim to separate security and redundancy into two separate
steps. Such a scheme will allow for the reconstruction of
an object during failure without requiring knowledge of
all shares created while encoding for security. Such sepa-
ration also enables a system to parameterize the threshold
for security and redundancy independently.

3.3 Data Structures

The shares of an object can be organized hierarchically in
a tree-like structure, as shown in figure 1, which fits natu-
rally into a two level splitting scheme. However on closer
inspection this introduces several problems. For example,
in a tree-like structure an object can link to its secrecy-
centric fragments, which are in turn each linked to their
redundancy-centric shards. In this scheme, the amount of
information obtained is dependent on what level is com-
promised. If a fragment is compromised, then all of its
shards are compromised. If the object root is compro-
mised, then it is very possible that an adversary can re-
construct the original object.

We would like to organize the data such that its position
in the data structure will not expose any information about
its origin. This can be easily accomplished using a linear

structure such as the one shown in figure 3. Each node in
the list would have two outgoing links and two incoming
links, which connect to two neighbors. Thus, if a node in
the structure is compromised, then the only information
exposed is that of its two neighbors. With this structure,
it would be beneficial to enforce a policy that neighbor
nodes not be related. An object can be reassembled by
assigning a name to each shard, which allows an autho-
rized entity to collect the correct shards and reconstruct
the object.

3.4 Data Migration

We assume directed attacks will eventually occur within a
long-term archival storage system. To make the task of re-
assembling the shards more difficult, we can make use of
our data structures to churn the shards. Since the physical
location of the shards does not affect object reconstruc-
tion, we can randomly migrate shards throughout the list.
Such migration not only creates difficulties for directed
attacks, but it can also be used as a load balancing mecha-
nism. Migrating shards such that no single point of failure
exists for an object would also be beneficial, but may be
difficult to accomplish without exposing too much infor-
mation about the shards. A possible solution would be to
assign a system-wide failure group to each shard, which is
checked upon insertion into the system’s data structures.
These problems will be covered in subsequent sections.

In addition to slowly churning the shards, such a system
would also need to support the migration of data from one
form of storage to another. As previously stated, migra-
tion between different storage devices is pivotal in POT-
SHARDS. We assume that failures will eventually occur
and current storage technologies will one day be replaced,
thus it would be to our advantage to ensure that data can
be moved between any storage medium.

3.5 Malicious Attack Survivability

A key element to POTSHARDS survivability is its dis-
tributed nature. To ensure the survivability of the contents
of the system, two key design elements related to the dis-
tributed nature of POTSHARDS must be enforced. These
two design features relate to malicious attacks on the sys-
tem.

The first design feature that must be present is that it
must be very difficult to launch a targeted attack against
POTSHARDS. This feature entails several aspects and is
important as protection from unauthorized data access.
An assumption made in this area is that activity in the
system is being monitored and strange behavior can be
detected and acted upon. If a malicious user is attempting
to access data for which they are not authorized, the at-
tack strategies available to the attacker should take a suffi-



ciently long time that an alarm would be raised. For exam-
ple, a brute force attack where the malicious user attacks
each storage node could be detected and the attacker iso-
lated before sufficient shares are obtained to reconstruct
data. Thus, the design of POTSHARDS should make it
difficult to launch a time-efficient targeted attack on the
system.

The second design feature that must be present is that
the distributed nature of POTSHARDS must not introduce
a single point of failure into the system. Any such sin-
gle element would introduce a vulnerability to denial of
service attacks into the system. Each of POTSHARDS
subsystems and the system as a whole must be robust in
design and implementation to resist an attack on any sin-
gle point which could prevent access to the contents of the
system.

4 Preliminary Design

The POTSHARDS design is still in the early stages of de-
velopment. Even though we have not thoroughly covered
all design aspects of the system, we have some idea of
how the data will be organized. This section will cover
techniques for splitting the data into storage units called
shards, writing objects to the system, retrieving objects
from the system and some of the basic data structures used
for data management.

4.1 Securely Splitting the Data

The POTSHARDS system stores files as a series of fixed
sized data blocks. These blocks of data are produced
through two levels of data processing: the first tuned for
security and the second for redundancy. The product of
the first level of splitting is a set offragments. These
fragments are hashed to form a unique fragment identi-
fier. Each fragment is then split into a set ofshards, with
each shard holding its source fragment’s identifier. Thus,
a set of shards can be used to reconstruct a fragment when
a failure occurs. This process is illustrated in Figure 2.

Using two levels of splitting provides a number of in-
teresting and useful properties. First, each object to be
stored by the system can be tuned for a particular stor-
age strategy. For example, a file that can be reproduced
with relative ease but contains content that must be secure
can be tuned for maximum secrecy while saving space
by sacrificing a bit of redundancy. Second, in the event
of a failure, an individual fragment for a file can be re-
constructed without exposing any additional information
about the original file. This can be very useful for online
consistency checkers. If a number of shards are found
to be corrupt, the remaining shards can be used to regen-
erate the fragment. This fragment does not expose any

file

fragment 1 fragment 2 fragment m

Redundancy

Encoding

Secret

Splitting

shard 1 shard 2 shard n

Figure 2: Splitting an object into fragments using se-
cret splitting and fragments into shards using redun-
dancy encoding.

information about the contents of the original file and can
be used to regenerate and redistribute the shards. Since
the contents of the file are not exposed in this process it
could potentially be done automatically without the need
for user intervention.

4.2 Fragment Identifier Lists

A list of fragment identifiers is created when an object
is added to the system. This fragment identifier list is
constructed during the first level of splitting. A fragment
identifier is added to an object’s fragment identifier list
when a fragment is created for the object. In addition, as
shown in Figure 2, a fragment identifier is concatenated
with a shard when the shard is created during the second
level of splitting. Such placement of the fragment iden-
tifiers allows one to identify the shards needed to recon-
struct the fragments for a given object. The use of the
concatenated fragment identifier is explained in the next
section.

4.3 Storing the Shards

We propose to organize data in a distributed, circular,
doubly-linked list. An example of the basic structure is
given in Figure 3. As shown in Figure 4, each node in the
list contains a pointer to its predecessor, a pointer to its
successor, a unique identifier, a shard, and a list of frag-
ment identifiers representing fragments constructed using



U1 U2 Uk

Archive n

T1 T2 Tj

Archive 2

S1 S2 Si

Archive 1

Figure 3: Data structure for organizing shares on a set
of archives. i D s h a r d n e x tp r e v i D s h a r d n e x tp r e vi D s h a r d n e x tp r e v F r a g m e n tU s a g e L i s t F r a g m e n tU s a g e L i s t F r a g m e n tU s a g e L i s t
Figure 4: Individual nodes of the list containing the
shards.

the contained shard. Each node in the list contains a list
of fragment identifiers, because we would like to reuse
shards to conserve space. Thus, it is possible for a shard
to be shared between two distinct fragments. Remember
to note that the shards are essentially random, thus sharing
shards between fragments does not reveal any information
about the object. The unique identifier is currently a cryp-
tographic hash of the shard. Note that the cryptographic
hash is used for verification at the shard level.

As shown in Figure 3, each archive holds a fraction of
the list locally, where the last node on the local list points
to another list on a different archive. Each node in the list
contains a shard generated through the two-level splitting
process, a unique identifier and a list of fragment identi-
fiers. The contents of the list are probabilistically churned
periodically to ensure that the nodes are distributed as uni-
formly as possible throughout the list. The contents of the
nodes can be churned by specialized processes and dur-
ing normal operations (i.e. searches, inserts, etc.). It is
assumed that all operations performed on an archive are
properly authenticated. Thus, in order to traverse the en-
tire list, the subject traversing the list will have to authenti-
cate with every archive in the system multiple times, once
for each shard. Since the shards are periodically churned,
it would be very difficult for an adversary to efficiently
reconstruct any of the objects. The details involving the
functionality of each archive is left to future work.

Given the structure of the data within the system, there
are currently two methods of verification. First, since a
node’s identifier is a hash of the shard, it can be used to
verify the contents of each node in the list. A more pow-
erful method of verification involves the concatenation of

the fragment identifier with the fragment before perform-
ing the second level of splitting. If the shards are cre-
ated with the fragment identifier embedded, verification
can occur on the fragment level. A process can collect the
shards for a randomly chosen fragment by searching the
list for a particular fragment identifier. The fragment iden-
tifier constructed after combining the shards would then
simply be compared to the search key used when collect-
ing the shards. Note that by randomly reconstructing frag-
ments for verification purposes, no information about any
of the objects is revealed, since a fragment only represents
a single piece of many needed to actually reconstruct the
object.

4.4 Creating Objects in the System

As stated in the previous section, two levels of splitting
will break an object up into many pieces, called shards.
We must now concern ourselves with how to store these
pieces in an efficient manner. Simply storing the shards
created in the second level of splitting can provide an effi-
cient and straightforward storage solution. With reference
to Figure 2, the fragments are thrown away and the shards
and their respective fragment identifiers are handed off to
the storage layer of the system. The shards are then in-
serted into the distributed, doubly-linked list in a proba-
bilistic manner.

Access to the original contents of an object will re-
quire all of the fragments generated in the first level of
splitting. Since only the fragment identifiers and shards
are stored, the fragments must be reconstructed from the
shards. Thus, authorization to first obtain the fragment
identifier list of an object is necessary along with the au-
thorization for the system to reconstruct a fragment using
each fragment identifier. Without authorization, an adver-
sary can only guess which fragments are used to create
an object. Such a search of the system would not only
require a great deal of time and computing power, but it
would also be easy to detect.

4.5 Retrieving Objects from the System

As implied from the structure illustrated in the previous
sections, the only piece of information necessary for im-
mediate object reconstruction is the fragment identifier
list. As of now, we are unsure how the actual fragment
identifier list will be stored. We assume a subject will re-
quest an object, which will require some form of authenti-
cation. If the subject is authorized to access the object, the
system will retrieve the fragment identifier list and issue
a fragment reconstruction request for each fragment iden-
tifier. Since each shard is stored with a list of the frag-
ment identifiers that use the shard, a traversal of the en-
tire distributed list is required for each fragment identifier.



Depending on the chosen storage policies for an object,
a fragment is reconstructed after all ((n,n)-scheme) or a
subset ((m,n)-scheme) of the shards for the given frag-
ment are found. The fragments are then used to recon-
struct the object.

5 Open Problems and Future Work

The POTSHARDS project is still at a relatively early stage
and thus many of its design elements are still in their for-
mative stages. In fact, none of the aspects of the POT-
SHARDS are at a stage where their design can be consid-
ered finalized for even the initial implementation. There
are still many questions that, while identified, have yet to
be examined in greater detail. Some of the more pressing
issues that we identified are listed below.

5.1 Data Structures

We expect POTSHARDS data structures to change as our
design of the system as a whole matures. Currently, we
are designing the system with doubly-linked lists in mind.
An early sketch of the system used tree structures which
may have improved performance but presented too much
of a security risk.

Aside from the fundamental data structures, the con-
tents of each node are subject to change as well. Some
possibilities for changes to the structure of the nodes in-
clude fields to indicate status of the node. This might
include fields used by garbage collection or fields which
identify the nodes as being of a particular data type. The
latter example could be useful if multiple types of data are
stored in the list besides shards such as naming informa-
tion or object metadata.

5.2 Consistency Checking

A critical aspect of very long-term storage is insuring that
file consistency is maintained. Malicious users, degrada-
tion and faulty writes can all cause trouble for a system
aimed at maintaining data for an extended period of time;
such a system must provide a proactive solution to insur-
ing that the integrity of its contents is protected. One
method of ensuring this in POTSHARDS is through the
use of active consistency checking.

One straightforward method of active consistency
checking would be to check the integrity of the system
contents at regular times. This would require securely
recording consistency information, such as a hash value,
for each shard. This method could be optimized by throt-
tling these integrity operations to reduce overhead during
times of high activity. Further optimization might involve
smart checking that does not check each shard but rather

checks enough shards so that the fragment could be regen-
erated.

A promising area of consistency checking could be the
use of algebraic signatures such as those described by
Litwin and Schwarz [6]. These structures could be used
to optimize the consistency checking within the system
compared to traditional hashing algorithms.

5.3 Archive Recovery

The distributed nature of POTSHARDS introduces the
possibility of a failed storage device. Since the system
is designed to provide storage for decades or longer, the
failure of one storage devices or even an entire archive
is inevitable. Further pressing the need for reliable dis-
aster recovery is the doubly linked list structure used in
POTSHARDS as shown in Figure 3. Since all the stor-
age devices are connected, the loss of one device must
not render the list irreparable. POTSHARDS must have a
reliable way to recover from the simultaneous failures of
multiple storage archives.

In addition to straightforward storage device failures,
the POTSHARDS system should be able to deal with
Byzantine failures where a device may be acting mali-
ciously. While the projected implementation of POT-
SHARDS would consist of a controlled network of dis-
tributed devices, as opposed to a federated storage sys-
tem such as FARSITE [1], the possibility still exists that a
compromised storage device could be acting maliciously.

5.4 Naming

At the present time the naming of shards within the sys-
tem has not been finalized. There are a number of pos-
sibilities that are being examined ranging from randomly
generated names, names based on cryptographic hashes
of the shards contents, or magic numbers generated by
some deterministic process. Hash based naming has the
advantage that the naming and consistency information
is one and the same. If a malicious user has the ability
to change shard data then there are two possible attack
scenarios. In the first, a malicious user changes the data
but not the name. In this case regenerating the name re-
veals the change. In the second scenario a malicious user
changes the data and the name. In this case a search for
a shard by name then the search simply returns a negative
result.

The issue of naming extends beyond shards to other el-
ements in the system. The methods and role of naming in
dealing with fragments and objects is another area to be
examined. The distributed nature of POTSHARDS also
suggests that the naming of components is an important
issue as well.



5.5 Storage Protocol

In the current discussion of POTSHARDS, the actual stor-
age devices are referenced in rather general terms. As
mentioned previously, the system is designed to be hard-
ware agnostic so that it can accommodate future advances
in computing technology. None the less, the capabilities
and high level storage protocols must be defined so that an
implementation can make adequate hardware decisions.

5.6 Migration

As POTSHARDS is designed for very long-term storage,
migration is an important consideration. The distributed
nature of the system suggests that archives will be coming
on-line as well as leaving the system. A method of safely
moving shards off of the archive that is scheduled to be
removed from the system is therefore very important. Re-
lated to graceful removal of archives from the system is a
method of dealing with catastrophic failure of a archive.

For archives that come on line after the initial start of
the system, a method of normalizing population across all
the archives in the system will be important. This may in-
volve placing more shards on new archives, moving exist-
ing shards to new archives or a hybrid of both approaches.

Another area of migration that is being considered is
the idea of data churning. Data churning would involve
the automatic movement of shards within the system. This
has the possible benefit of making targeted attacks more
difficult. One possible difficulty is that any churning strat-
egy would need to ensure that all of the shards needed
to reconstruct an object are not inadvertently moved to
the same archive. If the churning strategy is based on an
even probability distribution, the chances of this occurring
should be acceptably low. Even with a low probability of
shard consolidation within a single archive, we would still
prefer to not take any chances. We are considering poli-
cies to bound the number of single-object shards placed
on an archive. For instance, some fractionf of the to-
tal number of shards for an object will place a firm upper
bound on shard consolidation within a single archive.

5.7 Managing Storage Growth

If the growth of storage is not properly addressed, it is
obvious that POTSHARDS may incur a great deal of stor-
age overhead, which is the cost for long-term data pro-
tection and integrity. While the POTSHARDS system’s
distributed nature allows for easy installation of additional
storage, efficient use of existing storage might be achieved
through the use of garbage collection and shard reuse.

A possible problem with garbage collection would be
designing a strategy that does not violate any of the POT-
SHARDS design principles. Specifically, any garbage

collection strategy would have to be secure against a ma-
licious user. For example, if a straightforward strategy of
reference counting was used, the data structures must be
secure from a malicious user that attempts to artificially
reduce the reference count in order to trigger a clean-up.
If certain shards are used for the regeneration of more than
one file, as previously suggested, this sort of attack could
be very damaging.

Storage efficiency might also be accomplished by
reusing preexisting shards to limit the amount of storage
overhead needed. In this strategy, instead of generating
all the shards for a given fragment, it might be possible
to use a mixture of pre-existing and randomly generated
shards. The implications of this strategy would be that
some shards would be used in the regeneration of more
than one file. This could have the desired effect of reduc-
ing the total amount of storage overhead imposed by the
secret splitting and redundancy encoding.

6 Conclusions

Current systems do not address the needs of a system that
must store files securely for a very long period of time.
When storing files for spans of time measured in decades,
many of the common conventions used in storage intro-
duce unacceptable weaknesses. Keyed encryption intro-
duces a single point of failure and is only computationally
bound; history has shown that this approach often fails
over time. Similarly, user accounts and file ownership
may be shorter lived than the files when dealing with data
that must survive longer than the users that created it.

The POTSHARDS project aims to provide file secu-
rity for very long-term storage through the use of se-
cret sharing. Objects that are to be stored in the system
are split into fragments in a security layer and shards in
the redundancy layer. These shards are stored within a
distributed storage environment in a linked list structure.
Since computing technology has the potential to drasti-
cally change over several decades the POTSHARDS sys-
tem is designed with a modular structure that allows for
components to be upgraded over time.

Moving forward, the primary focus for the POT-
SHARDS system is to continue to revise and formalize the
design, with the goal of producing a working prototype. A
testable prototype should further force the revision of the
designs described in this paper and provide some evidence
for the scalability and feasibility of the system.

Acknowledgments

The authors would like to thank Owen Hofmann, Carl
Lischeske, Kristal Pollack, Deepavali Bhagwat, Lawrence



You, and Darrell Long for their help in early discus-
sions on the POTSHARDS design. Other members of
the Storage Systems Research Center were also helpful.
We would also like to thank the industrial sponsors of the
SSRC, including Hewlett Packard Laboratories, Hitachi
Global Storage Technologies, IBM Research, Intel, Mi-
crosoft Research, Network Appliance, Rocksoft, Veritas,
and Yahoo for their generous support.

References

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cer-
mak, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer,
and R. Wattenhofer. FARSITE: Federated, available, and
reliable storage for an incompletely trusted environment.
In Proceedings of the 5th Symposium on Operating Sys-
tems Design and Implementation (OSDI), Boston, MA,
Dec. 2002. USENIX.

[2] Y. Chen, J. Edler, A. Goldberg, A. Gottlieb, S. Sobti, and
P. Yianilos. A prototype implementation of archival inter-
memory. InProceedings of the Fourth ACM International
Conference on Digital Libraries, 1999.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. Lecture Notes in Computer Science, 2009:46+,
2001.

[4] A. Haeberlen, A. Mislove, and P. Druschel. Glacier:
Highly durable, decentralized storage despite massive cor-
related failures. In2nd Symposium on Networked Systems
Design and Implementation (NSDI ’05), Boston, MA,
USA, May 2005.

[5] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore:
An architecture for global-scale persistent storage. InPro-
ceedings of the Ninth International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, pages 190–201, Nov 2000.

[6] W. Litwin and T. Schwarz. Algebraic signatures for scal-
able distributed data structures. Technical Report CE-
RIA Technical Report, Université Paris 9 Dauphine, Sept.
2002.

[7] P. Maniatis, M. Roussopoulos, T. Giuli, D. S. H. Rosen-
thal, M. Baker, and Y. Muliandi. Preserving peer replicas
by rate-limited sampled voting. InProceedings of the Sym-
posium on Operating Systems Principles, Bolton Landing,
NY, Oct 2003. ACM.

[8] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 2001.

[9] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. InProceedings of the 18th ACM Sym-
posium on Operating Systems Principles, Chateau Lake
Louise, Banff, Alberta, Canada, Oct 2001.

[10] D. R. Stinson.Cryptography Theory and Practice. Chap-
man & Hall/CRC, Boca Raton, FL, second edition, 2002.

[11] A. Subbiah and D. M. Blough. An approach for fault tol-
erant and secure data storage in collaborative work envi-
ronements. InProceedings of the 2005 ACM Workshop on
Storage Security and Survivabiilty, pages 84–93, Fairfax,
VA, Nov. 2005.

[12] T. M. Wong, C. Wang, and J. M. Wing. Verifiable secret
redistribution for threshold sharing schemes. Technical
Report CMU-CS-02-114-R, Carnegie Mellon University,
Oct. 2002.

[13] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger,
H. Kiliççöte, and P. K. Khosla. Survivable storage sys-
tems.IEEE Computer, pages 61–68, Aug. 2000.


	Introduction
	Related Work
	Design Goals
	Assumptions
	Security and Replication
	Data Structures
	Data Migration
	Malicious Attack Survivability

	Preliminary Design
	Securely Splitting the Data
	Fragment Identifier Lists
	Storing the Shards
	Creating Objects in the System
	Retrieving Objects from the System

	Open Problems and Future Work
	Data Structures
	Consistency Checking
	Archive Recovery
	Naming
	Storage Protocol
	Migration
	Managing Storage Growth

	Conclusions

