
Logan: Automatic Management for Evolvable,
Large-Scale, Archival Storage

Mark W. Storer, Kevin M. Greenan, Ian F. Adams
Ethan L. Miller, Darrell D.E. Long

Storage System Research Center
University of California, Santa Cruz

{mstorer, kmgreen, iadams, elm, darrell}@cs.ucsc.edu

Kaladhar Voruganti
NetApp

Kaladhar.Voruganti@netapp.com

Abstract—Archival storage systems designed to preserve
scientific data, business data, and consumer data must
maintain and safeguard tens to hundreds of petabytes of
data on tens of thousands of media for decades. Such
systems are currently designed in the same way as higher-
performance, shorter-term storage systems, which have a
useful lifetime but must be replaced in their entirety via
a “fork-lift” upgrade. Thus, while existing solutions can
provide good energy efficiency and relatively low cost,
they do not adapt well to continuous improvements in
technology, becoming less efficient relative to current tech-
nology as they age. In an archival storage environment, this
paradigm implies an endless series of wholesale migrations
and upgrades to remain efficient and up to date.

Our approach, Logan, manages node addition, removal,
and failure on a distributed network of intelligent storage
appliances, allowing the system to gradually evolve as
device technology advances. By automatically handling
most of the common administration chores—integrating
new devices into the system, managing groups of devices
that work together to provide redundancy, and recovering
from failed devices—Logan reduces management overhead
and thus cost. Logan can also improve cost and space
efficiency by identifying and decommissioning outdated
devices, thus reducing space and power requirements for
the archival storage system.

I. I NTRODUCTION

The ability to store and maintain massive quantities
of data is becoming increasingly important, as scientists,
businesses, and consumers are increasingly aware of the
value of archival data. Scientists have long attempted
to preserve data archivally, though such efforts have
sometimes fallen short. In the business arena, data
preservation is often mandated by law [1, 17], and data
mining has proven to be a boon in shaping business
strategy. For individual consumers, archival storage is
being called upon to preserve sentimental and historical
artifacts such as photos, movies and personal docu-
ments. Unfortunately, traditional storage systems are
not designed to meet the needs of long-term, archival
data [6]. Paradoxically, despite the increasing value of

archival data, high cost is one of the biggest obstacles to
applying traditional storage techniques to design systems
to house archival data. Long-term storage systems should
be inexpensive enough to allow the preservation of all
data thatmight eventually prove useful.

In contrast to traditional storage systems, which are
typically more concerned with scalability in performance
and capacity, an archival storage system designed for
long-lived data must scale over many dimensions, in-
cluding time, vendors and technologies [6]. The goal
therefore, is to move away from an endless series of
migrations and “fork-lift” upgrades, to a continuously
evolving system. To realize this goal, we are developing
Pergamum, a system that consists of a distributed net-
work of up to 105–106 energy-efficient storage devices,
called tomes, that communicate over a commodity Eth-
ernet backplane [26]. While these devices can operate
independently, their full potential is realized when they
cooperate in inter-device redundancy groups to provide
data reliability and ensure data longevity. Since the stor-
age nodes are intelligent, each device contains special-
ized software that acts as an abstraction layer between
the system, and the device’s underlying hardware. This
flexibility provides the potential for an adaptable system
that changes gradually with technology; while individual
components may change, the overall system evolves
gracefully.

Although a fully distributed system is well-suited
to an evolvable design, it introduces the problem of
managing the global state of a fully decentralized system.
Recent work has made great strides towards efficiently
aggregating data over very large networks of distributed
nodes [31, 32]; however, these approaches may be in-
sufficient in a system that could easily encompass mil-
lions of nodes. A million-node distributed system must
facilitate nodes joining the system, manage placement of
data and redundancy information, handle node failure,
and gracefully phase out nodes as they age. All of



this must be done with no central point of failure.
However, it is impractical for each node to maintain
global knowledge—keeping just 10 KB per node for each
of a million nodes would require 10 GB of storage per
node. Moreover, keeping that information current would
require far too many messages to be exchanged between
nodes. Instead, an archival system must allow nodes to
operate with partial knowledge of the whole system and
more complete knowledge of a small part.

Archival systems become more useful as their cost
decreases, making energy efficiency an important as-
pect of long-term storage. However, while some earlier
systems have addressed energy efficiency [8, 11, 18],
none have examined how opportunity costs affect a
system over its lifetime. Since drive capacity, real estate
values and power costs are always increasing, system
efficiency must be measured against what is currently
achievable, not simply what wasonce achievable. For
example, most storage systems assume that drives are
replaced due to failure or wholesale system upgrades,
suggesting that drives may remain in use well past the
point of being economically efficient. Further, proactive
decommissioning could also improve system reliability;
earlier work has shown that the previously-held bathtub
failure model for hard drives may not be valid [24], and
that even small numbers of sector failures can presage
overall drive failure [5].

Because our overall goal is to reduce the cost of
long-term archival storage by reducing management cost,
we designed Logan to address several major challenges.
First, Logan must automatically integrate new nodes into
an existing system. This includes both making the system
aware of the new device, and integrating the new device’s
storage into redundancy groups to protect the data it
stores against device failure. Second, Logan must ensure
the correctness and longevity of data stored redundantly
across nodes in the face of changing device membership
and failures. Third, Logan should strive to keep power
and other ongoing costs as low as possible by monitoring
a device’susefulness—the utility it provides compared
to the resources it consumes—and decommissioning the
device when it has outlived its useful lifespan.

The remainder of the paper is organized as follows.
Section II places Logan within the context of existing
research. Next, Section III provides an overview of our
current design. Finally, in Section IV we discuss where
we plan to focus our future efforts; we conclude the
paper in Section V.

II. RELATED WORK

In designing Logan to meet the goals of energy-
efficient, reliable, archival storage [6], we used concepts

from a variety of projects. In this section, we place
our work in the context of existing work by presenting
an overview of relevant existing storage systems, and
distinguishing them from Logan by identifying their
architecture, intended workload, and cost strategy.

A. Distributed Communication

Because distributed systems are composed of loosely
coupled, independent devices, system-wide communi-
cation can be challenging. An extreme approach is
the pursuit of global awareness, in which a fully con-
nected graph allows one-hop communications between
any two nodes [2, 12, 14]. Unfortunately, the per node
storage overhead, and proliferation of messages with
these strategies make them suitable for only relatively
small systems. Some systems have sought efficiency
gains through the use of randomization, but even these
approaches incur relatively heavy costs [7, 28].

Information management systems attempt to provide
system level awareness, while still maintaining a decen-
tralized, distributed architecture. Some, such as SDIMS
and Shruti, utilize DHT algorithms as part of their foun-
dation [31, 32]. These information management systems
aggregate information about a distributed system’s state,
and make it available in a way that does not collect all
of the information in a central point of failure. Another
approach to data aggregation is seen in Astrolabe, which
eschews DHTs in favor of a gossip-based approach [21].
Unfortunately, this approach focuses more on data sum-
maries that data aggregation and can be inefficient for
some workloads.

B. Storage Systems

Distributed, peer to peer architectures have been used
in storage systems geared to a variety of workloads.
Logan, which is designed to run on a Pergamum-style
archival storage architecture [26], relaxes some per-
formance criteria in exchange for economic efficiency,
unlike many existing systems that attempt to achieve
performance levels on par with traditional, centralized
storage [22, 23].

Logan is designed for a fully distributed architecture
with no need for specialized nodes and central reposito-
ries of information. In long-term storage scenarios, cen-
tralized points of failure can compromise data longevity.
For example, Venti, which can store archival data on
removable media, utilizes a centralized index [20]. Un-
fortunately, while this index can be rebuilt by reading in
partial indices stored on media, the bottleneck of media
readers makes this a prohibitively lengthy procedure as
overall data size increases to hundreds of petabytes and



beyond. Similarly, the Google File System is a semi-
distributed system that utilizes master nodes. However,
as it was not designed for long-term archival data, it
avoids the recovery problem by relaxing consistency and
longevity constraints [9].

Energy efficiency is an area that many designs have
explored in pursuit of cost savings. Some reports state
that commonly used power supplies operate at only 65–
75% efficiency, representing one of the primary culprits
of excess heat production, and contributing to cooling
demands that account for up to 60% of data-center
energy usage [10]. The development of Massive Arrays
of Idle Disks (MAIDs) generated large cost savings by
leaving the majority of a system’s disks spun down [8].
Further work has expanded on the idea by incorporating
strategies such as data migration, the use of drives that
can spin at different speeds, and power-aware redun-
dancy techniques [16, 18, 19, 29, 33, 35].

Finally, a number of projects have sought to yield
cost savings from improved management techniques [3].
IBM’s Intelligent Bricks project utilizes intelligent stor-
age appliances in liquid cooled rack designed for very
high device density [30]. Unfortunately, the design in-
tentionally forgoes accessibility of nodes as a trade off
for higher density. In a long-term scenario, this implies
that eventually failed nodes will consume floor space
while providing no utility. Others, such as Sun’s Hon-
eycomb project, trade energy efficiency for management
gains [27]; in some scenarios, as many as sixty disks
could be involved with a single write.

III. PROPOSEDDESIGN

The system we envision is driven by a workload that
exhibits read, write and delete behavior that differs from
typical disk-based workloads, providing both challenges
and opportunities. The workload is write-heavy, moti-
vated by regulatory compliance and the desire to save
any data thatmight be valuable at a later date. Reads,
while relatively infrequent, are often part of a query or
audit and thus are likely to refer to data that is temporally
correlated. Similarly, data being deleted are likely to
exhibit a temporal relationship since retention policies
often specify a maximum data lifetime. This workload
resembles traditional archival storage workloads [20, 34],
adding deletion for regulatory compliance.

We are currently developing Logan, a management
layer that runs atop the distributed network of inex-
pensive, independent storage appliances provided by
Pergamum [26]. This architecture provides a number of
advantages in a long-term archival scenario. First, each
device acts as an abstraction layer to the underlying
media, easing transitions to new technologies. Second,

Logan

PC C C C

R
e
d
u
n
d
a
n
c
y
 G
ro
u
p
s R0

R1

R2

Fig. 1. Overview of Logan running a distributed network of devices.
One device,P, is in thePENDING state, while the others,C, areCON-
TRIBUTING in redundancy groups. Data blocks (white) are protected
with internal parity (dark grey) and external parity.

using a high number of low powered processors yields
energy savings versus a few high powered processors
(cutting processor voltage in half results in half the clock
speed but one fourth the power consumption). Third, an
inexpensive node can be treated as an indivisible entity;
if any part of the node fails, the entire node is discarded
and replaced. This reduces the management overheard
associated with locating and replacing individual com-
ponents.

While each device is independent and actively ensures
the longevity of its own data, nodes also cooperate in
redundancy groups to provide system wide data relia-
bility. Data in each device is divided into fixed sized
blocks, and blocks are grouped into fixed sizedsegments.
In a large archival system, data failures will be quite
common, and thus a “one size fits all” approach to
reliability is excessively wasteful. Figure 1 illustratesthe
two-level reliability model used in Pergamum [26], the
system on which Logan runs. First, each device survives
media faults by utilizing block-level erasure coding over
segments [4]. Second, distributed RAID techniques are
used over groups of segments to survive the loss of
a device [25]. Since heterogeneity is inevitable in an
evolvable system, device capacity will vary between
appliances. Thus, unlike a simple RAID system where
all drives are the same size, a device can contribute
segments to more than one redundancy group in order
to utilize all of its local storage capacity.

A. Management Groups

Because global knowledge becomes increasingly in-
feasible as the number of nodes increases, devices are
arranged intomanagement groups. Each management
group chooses one or more group leaders that oversees
administration for a given term. At a system wide
level, the management groups are arranged in a logical
hypercube because this topology offers a number of
benefits. First, it offers efficient communications routing.
As shown in Figure 2, message routing occurs in a



4

(100)

0

(000)

1

(001)

2

(010)

3

(011)

5

(101)

6

(110)

7

(111)

source group

destination group

Fig. 2. Eight management groups arranged in a hypercube of
dimension 3. Nodes involved in routing from group 2 to 5 shown
in white. Routing is done inO(lg n) time, since each hop brings the
message one bit closer to its destination.

hierarchical fashion, with messages first routed to the
destination group, and finally routed within the destina-
tion group. Second, management groups grow until they
reach a certain size, and then are split into two groups.
This technique for incremental growth in the number of
management groups is well suited to the construction of
hypercubes.

The system begins with a single management group.
Nodes entering the system are added to this group until it
reaches a predetermined saturation point, at which point
it splits into two groups with an average of half the
membership each. Membership and splitting is based
on the LH* family of distributed data structures [15].
This approach offers several benefits. First, these data
structures do not require a globally consistent view in
order to function properly. This property is especially
important because, in a system of the scale we envision,
tight consistency expectations are unrealistic. Second,
they allow the system to gracefully scale from a small
system of just a single management group to a large
system with thousands. Third, since group membership
is calculated instead of statically assigned, a node can
be located from its name alone.

LH* utilizes two variables,n and i, to coordinate
all of operations. First, system routing utilizes these
variables in the hash function used to determine which
management group a node belongs to. In the event that
a node is routed using an older version ofn and i, the
selected bucket will route the message to the correct
bucket, as well as update the source with the up to
date variables values. Second,n acts a token allowing

4

(100)

0

(000)

1

(001)

2

(010)

3

(011)

5

(101)

6

(110)

C P

G1

G2

C ! P ! G1 = N1 = 100 < C 

C ! P ! G2 = N2 = 111 

Fig. 3. When parentP (node 2), produces a childC (node 6), it
provides the child with a list of its grandparentsG1 andG2 (nodes 0
and 3). The child then calculates which, if any of its bitwiseneighbors
it needs an introduction to from its grandparent.

distributed splitting; when bucketn splits, it passes the
token to bucketn +1 mod 2i.

When a group splits, it must establish connections
with its bitwise neighbors,N, in order to preserve the
logical hypercube. One such connection is from the
child,C, to its parent,P. This connection is easy to make.
Additionally, it must establish a connection with each
existing group whose name is exactly one bit different
than its own name. To perform this, the parent supplies
the child with a list of its grandparents,G. For each
grandparent, the child calculatesC⊕P∨G = N. If N <C,
thenC asksG to make an introduction. IfN ≥ C, then
that bitwise neighbor has not yet been formed and no
further action is required. This process is illustrated in
Figure 3.

B. Device Lifetimes

When a new node enters the system, it performs a
broadcast to nearby nodes to locate other Logan devices;
there is no need for the new node to broadcast to all (or
even most) of the nodes in the system. The devices that
respond are able to provide the new node with their view
of the global system state, which in turn is used by the
new node to calculate its management group. Once a
new node has calculated its management group, it asks
for further assistance in locating a fellow member of
its group. Eventually the new node is introduced to the
current group leader.

Once a node has become member of the system, it is
managed through its entire lifespan, progressing through
three states:PENDING, CONTRIBUTING, and EXPIRED.



Expired

Contrib-
uting

Pending

Install Node

burn-in failure
(infant mortality)

integrate into
redun. group

device
failure

decommision

Remove Node

Fig. 4. Nodes in the system exist in one of three states. A
functioning node that is not yet part of any redundancy groups is in
the initial, PENDINGstate.CONTRIBUTING nodes have been integrated
into redundancy groups.EXPIRED nodes have either failed or been
decommissioned, and can be removed from the system.

The first state,PENDING, indicates a node that is alive on
and known to the system, but is not yet a member of any
redundancy groups. The second state,CONTRIBUTING,
denotes a live node that is member of one or more
redundancy groups. The third state,EXPIRED, indicates
that a node has failed or been decommissioned.EXPIRED

nodes can be physically removed from the system; if
other nodes are removed, the system handles the removal
as a failure. Figure 4 illustrates these three states and the
transitions between them.

A newly installed node is not immediately integrated
into redundancy groups, but rather is placed into the
PENDING state. This design provides a number of ben-
efits. First, this allows the node to undergo a self-check
and burn-in period in order to reduce the impact of infant
mortality and batch correlated failures. Second, when it
is time to expand the available storage in the system,
Logan is able to make smarter management decisions by
utilizing the devices in thePENDING pool, as compared
to an approach that immediately integrates every node
as soon as it arrives.

When Logan integrates a device into into one or more
redundancy groups, that node enters theCONTRIBUTING

state. In this mode, nodes store data, participate in
redundancy group activities, and answer read and write
requests. Eventually, as the node ages and its usefulness
decreases relative to newer nodes, it will increasingly
become a candidate for decommissioning.

C. Management Tasks

Management groups are tasked with a number of
administrative duties. The first of these,scale out, deals
with expanding the capacity of the system. It involves
the creation of redundancy groups, and the assignment

of segments to those groups. The second area,recovery,
determines where data will be recovered to when a node
is lost. The final area,maintenance, monitors the health
of the system and actively identifies nodes that are ready
to be decommissioned.

Each device in Logan maintains a list of named at-
tributes that describe that device. In addition to querying
the device for values, the system can also update the
values. This can be used to reflect usage effects such
as the accelerated wear caused by drive spin-ups, or the
effects of batch correlated failures.

In order to make good management decisions, we
are exploring the use of heuristic algorithms such as
simulated annealing [13]. These algorithms attempt to
solve an optimization problem by utilizing heuristics
to repeatedly perform minor modifications to a partial
solution. To this end, these algorithms utilize three main
components. First, the solution space,X is the space
of all possible solutions from which the answer will be
drawn. Second, the neighbor function,N, heuristically
chooses a new solution that is “close” to the current
solution in the solution space. Finally, a objective func-
tion, P, measures the “goodness” of a solution, and is the
value that the heuristic algorithm attempts to minimize
or maximize.

Management group leaders collect the attribute lists
from the members in their groups in order to develop a
statistical understanding about the group’s devices. This
information is used during the administrative functions
to identify expensive devices, in terms of utility versus
resources consumed, without requiring administrator in-
put. For example, this approach can identify a group’s
most power-hungry device. Further, this approach can
determine how power-hungry that device is in compari-
son to the average of the group’s devices.

1) Scale Out: For scale-out operations, each manage-
ment group maintains a list of its redundancy groups
and the devices assigned to those groups. This list is
consulted and updated based on two redundancy group
operations. First, Logan can form a new redundancy
group. Second, Logan can expand an existing redun-
dancy group. The latter strategy is possible because
redundancy groups have a population range. Logan
does not always fully populate new redundancy groups.
Rather, it creates partially populated groups that still
meet the system’s reliability criteria, thus allowing the
system to expand capacity, even when there are insuffi-
cient devices to create an entirely new redundancy group.
For example, the system might require parity groups to
be of the formn+3 disks, where 6≤ n≤ 13. This would
mean that a redundancy group would have a minimum



of 9 disks and a maximum of 16 disks, and be able to
grow from 9 to 16 gradually over time if needed.

At the device level, each management group maintains
a list of of its devices and their unassigned, or free, seg-
ments. From this pool, Logan can assign device segments
to redundancy groups from two primary sources. First,
Logan can utilize previously unassigned segments from a
device in theCONTRIBUTING state. Second, it can utilize
segments from aPENDING device. Naturally, this would
cause the device to transition to theCONTRIBUTING

state.
Logan monitors the system, and performs a scale out

operation when it detects that available free space in a
management group has dropped below a predetermined
low water mark. When this occurs, the management
group performs a number of scale-out initialization steps.
First, it determines which redundancy group are less
than fully populated. Second, it determines if the ex-
isting groups offer sufficient scale-out room, or if new
redundancy groups must be created.

2) Recovery: As with any storage system, and espe-
cially a long-term archival system, failure is inevitable.
Additionally, since the system must be cost efficient,
it is not enough to simply recover data to the first
available free space. To address this problem, Logan uses
similar heuristic search techniques to determine where
data should be recovered to in the event of a device
failure.

An instance of solution space is a mapping of seg-
ments to redundancy groups. At each iteration of the
algorithm, some subset of free segments are mapped to
the segments of the failed device. The primary constraint
to enforce during recovery is that each member of a
redundancy group is a different device.

3) Maintenance: The goal of maintenance is to deter-
mine if there is a management group configuration that
can offer better service for the same or lower resource
consumption.

As in previous management group operations, the state
of the system consists of a mapping of device free
segments to redundancy groups. However, in the case
of maintenance, the redundancy group list consists of
all the existing redundancy groups. At each iteration,
devices that are likely to be decommissioned based on
their expected lifetime or high energy costs per segment
are randomly swapped with available segments. For
this operation, a valid solution enforces the constraint
that a device can only be decommissioned if all of its
committed segments have a replacement, and that those
replacements conform to the standard redundancy group
constraints.

Unlike recovery and scale-out which are performed

as soon as the heuristic completes, maintenance chores
can handled opportunistically. A device that has been
identified for decommissioning can wait until a scrub-
bing event or recovery event occurs in order to defray
the power costs associated with a wholesale migration of
a nodes complete contents. An important factor that en-
ables this opportunistic approach is that the optimizations
that maintenance seeks to achieve are not critical to data
safety. When the unit being decommissioned activates,
it can check to see if the units slated to takes its place in
redundancy groups are still available. If they are not, the
decommissioning can be cancelled, or new replacements
can be chosen.

IV. FUTURE WORK

Current effort on Logan is focused on refining the
skeleton, described in the previous section. Much of this
work is directed towards exploring the use of heuristic
algorithms in making sound management decisions. Ad-
ditionally, we are exploring the behavior of the system to
help determine the correct size of management groups;
too large and the group leaders are overwhelmed, too
small and the resulting splitting results in unnecessary
management overhead. Finally, we are examining the
boot-strapping problem; while the system is designed
to scale up to hundreds of thousands of nodes, it must
inevitably start with one.

Further along in our research plans, we plan on
examining how best to deal with large-scale disasters
and network partitions. In a long-term storage system,
these sorts of events are inevitable, and must be survived
gracefully, and with a minimum of needless energy
expenditures. Many such events, such as a failed switch
causing a network partition, are benign in the sense
that data may still be safe, it is simply unreachable.
However, the system’s reaction in such a scenario could
inadvertently cause more harm than good; the system
may try and immediately rebuild all data that it could
not contact.

As previously discussed, large archival systems are
well suited to recovery procedures that allow the re-
sponse to be scaled to the size of the problem. Currently,
we utilize a two level scheme of intra-device and inter-
device reliability. A third level, across geographically
diverse sites, would be useful in order to protect data
from natural disasters or other other “act of god” failures.

The dependency list of a given device describes the
nodes that contribute to the reliability of a given node’s
data. Put another way, if a device fails, all of the
device’s in the failed device’s adjacency list will need
to contribute data during the recovery process. Thus,
the size of the dependency list could have considerable



impact on data reliability, and during recovery, energy
consumption. A large redundancy group allows greater
parallelization during recovery, and implies greater di-
versity in the redundancy group’s devices. In contrast a
smaller adjacency list requires less devices to spin up
during recovery. Considering these and other potential
tradeoffs, an understanding of how adjacency affects
reliability and power consumption could allow us to
tailor our optimization methods to their ideal size.

Another intersection of reliability and power can be
seen in a failed devices recovery schedule. That is, the
amount and ordering of parallelization that occurs during
rebuild. With a fuller understanding of power use during
rebuild Logan could determine not only the placement
of recovered data, but also the order that recovery should
proceed. This area is complicated by the affect of very
transient system states. For example, device population
changes much slower than the list of currently spun up
devices.

V. CONCLUSIONS

While archival systems are well served by a distributed
architecture, such a design introduces the management
challenges of heterogeneity in an evolving and aging
system. Further, as part of a comprehensive cost strategy,
such a system should continuously seek ways to maxi-
mize the utility it offers for the resources it is consuming.

To this end, we are developing Logan, a management
layer that runs atop, a distributed network of energy-
efficient, intelligent storage appliances [26]. Nodes are
arranged in redundancy groups which allows data to
be recovered from a lost node. To manage redundancy
groups, and to facilitate system-wide communication,
Logan arranges devices into management groups. Fur-
ther, Logan collects information about the nodes in
each management group and uses this data to make
intelligent management decisions. Logan helps control
archival storage costs by automating a number of com-
mon administrative tasks, and opportunistically decom-
missioning of old hardware.

ACKNOWLEDGMENTS

We would like to thank our colleagues in the Storage
Systems Research Center (SSRC) who provided valuable
feedback. This research was supported by the Petascale
Data Storage Institute under Dept. of Energy award DE-
FC02-06ER25768, and by the industrial sponsors of the
SSRC, including Los Alamos National Lab, Lawrence
Livermore National Lab, Sandia National Lab, Data
Domain, Hewlett-Packard Laboratories, IBM Research,
LSI, NetApp, Seagate, and Symantec.

REFERENCES

[1] “Health Information Portability and Accountability Act,” 104th
Congress, Oct. 1996.

[2] I. Abraham and D. Dolev, “Asynchronous resource discovery,”
in Proceedings of the Twenty-Second Annual Symposium on
Principles of Distributed Computing (PODC 2003), Boston, MA,
Jul. 2003, pp. 143–150.

[3] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch, “Hippodrome: running circles around storage
administration,” inProceedings of the 2002 Conference on File
and Storage Technologies (FAST), Monterey, CA, Jan. 2002.

[4] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler, “An analysis of latent sector errors in disk drives,”
in Proceedings of the 2007 SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, Jun. 2007.

[5] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “An analysis of
data corruption in the storage stack,” inProceedings of the 6th
USENIX Conference on File and Storage Technologies (FAST),
Feb. 2008, pp. 223–238.

[6] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos, P.Ma-
niatis, T. Giuli, and P. Bungale, “A fresh look at the reliability of
long-term digital storage,” inProceedings of EuroSys 2006, Apr.
2006, pp. 221–234.

[7] B. S. Chlebus and D. R. Kowalski, “Gossiping to reach con-
sensus,” inProceedings of the 14th ACM Symposium on Parallel
Algorithms and Architectures (SPAA), Winnipeg, Manitoba, Aug.
2002, pp. 220–229.

[8] D. Colarelli and D. Grunwald, “Massive arrays of idle disks
for storage archives,” inProceedings of the 2002 ACM/IEEE
Conference on Supercomputing (SC ’02), Nov. 2002.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file
system,” inProceedings of the 19th ACM Symposium on Operat-
ing Systems Principles (SOSP ’03). Bolton Landing, NY: ACM,
Oct. 2003.

[10] Green Grid Consortium, “The green grid opportunity, de-
creasing datacenter and other IT energy usage patterns,”
http://www.thegreengrid.org, The Green Grid, Feb 2007.

[11] A. Guha, “Solving the energy crisis in the data center using
COPAN Systems’ enhanced MAID storage platform,” Copan
Systems white paper, Dec. 2006.

[12] M. Harchol-Balter, T. Leighton, and D. Lewin, “Resource dis-
covery in distributed networks,” inProceedings of the Eighteenth
ACM Symposium on Principles of Distributed Computing (PODC
1999), Atlanta, GA, May 1999, pp. 229–237.

[13] S. Kirkpatrick, C.D. Gelatt, Jr., and M. Vecchi, “Optimization by
simulated annealing,”Science, vol. 220, no. 4598, pp. 671–680,
1983.

[14] S. Kutten, D. Peleg, and U. Vishkin, “Deterministic resource dis-
covery in distributed networks,” inProceedings of the 13th ACM
Symposium on Parallel Algorithms and Architectures (SPAA),
Crete Island, Greece, Jul. 2001, pp. 77–83.

[15] W. Litwin, M.-A. Neimat, and D. A. Schneider, “LH*—a scal-
able, distributed data structure,”ACM Transactions on Database
Systems, vol. 21, no. 4, pp. 480–525, 1996.

[16] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-
loading: Practical power management for enterprise storage,” in
Proceedings of the 6th USENIX Conference on File and Storage
Technologies (FAST), Feb. 2008, pp. 253–267.

[17] M. G. Oxley, “(H.R.3763) Sarbanes-Oxley Act of 2002,” Feb.
2002.

[18] E. Pinheiro and R. Bianchini, “Energy conservation techniques
for disk array-based servers,” inProceedings of the 18th Inter-
national Conference on Supercomputing, Jun. 2004.

[19] E. Pinheiro, R. Bianchini, and C. Dubnicki, “Exploiting redun-
dancy to conserve energy in storage systems,” inProceedings
of the 2006 SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, Saint Malo, France, Jun. 2006.



[20] S. Quinlan and S. Dorward, “Venti: A new approach to archival
storage,” in Proceedings of the 2002 Conference on File and
Storage Technologies (FAST). Monterey, California, USA:
USENIX, 2002, pp. 89–101.

[21] R. V. Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A
robust and scalable technology for distributed system monitoring,
mangement, and data mining,”ACM Transactions on Computer
Systems, vol. 21, no. 2, pp. 164–206, May 2003.

[22] A. Rowstron and P. Druschel, “Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility,” in
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01). Banff, Canada: ACM, Oct. 2001, pp.
188–201.

[23] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence,
“FAB: Building distributed enterprise disk arrays from commod-
ity components,” inProceedings of the 11th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2004, pp. 48–58.

[24] B. Schroeder and G. A. Gibson, “Disk failures in the realworld:
What does an MTTF of 1,000,000 hours mean to you?” in
Proceedings of the 5th USENIX Conference on File and Storage
Technologies (FAST), Feb. 2007, pp. 1–16.

[25] M. Stonebraker and G. A. Schloss, “Distributed RAID—a new
multiple copy algorithm,” inProceedings of the 6th International
Conference on Data Engineering (ICDE ’90), Feb. 1990, pp.
430–437.

[26] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti,
“Pergamum: Replacing tape with energy efficient, reliable,disk-
based archival storage,” inProceedings of the 6th USENIX
Conference on File and Storage Technologies (FAST), Feb. 2008.

[27] Sun Microsystems, “Sun StorageTek 5800 system architecture,”
White paper, Dec. 2007.

[28] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun.
1998.

[29] C. Weddle, M. Oldham, J. Qian, A.-I. A. Wang, P. Reiher, and
G. Kuenning, “PARAID : A gear-shifting power-aware RAID,” in
Proceedings of the 5th USENIX Conference on File and Storage
Technologies (FAST), Feb. 2007.

[30] W. W. Wilcke, R. B. Garner, C. Fleiner, R. F. Freitas, R. A.
Golding, J. S. Glider, D. R. Kenchammana-Hosekote, J. L.
Hafner, K. M. Mohiuddin, K. Rao, R. A. Becker-Szendy, T. M.
Wong, O. A. Zaki, M. Hernandez, K. R. Fernandez, H. Huels,
H. Lenk, K. Smolin, M. Ries, C. Goettert, T. Picunko, B. J. Rubin,
H. Kahn, and T. Loo, “IBM Intelligent Bricks project—petabytes
and beyond,”IBM Journal of Research and Development, vol. 50,
no. 2/3, pp. 181–197, 2006.

[31] P. Yalagandula and M. Dahlin, “A scalable distributed infor-
mation management system,” inProceedings of the Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM ’04). Portland, OR:
ACM Press, Aug. 2004, pp. 379–390.

[32] P. Yalagundula and M. Dahlin, “Shruti: A self-tuning hierarchical
aggregation system,” inProceedings of the First International
Conferece on Self-Adaptive and Self-Organizing Systems (SASO
2007), Boston, MA, Jul. 2007, pp. 141–150.

[33] X. Yao and J. Wang, “RIMAC: a novel redundancy-based hierar-
chical cache architecture for energy efficient, high performance
storage systems,” inProceedings of EuroSys 2006, Oct. 2006, pp.
249–262.

[34] L. L. You, K. T. Pollack, and D. D. E. Long, “Deep Store:
An archival storage system architecture,” inProceedings of the
21st International Conference on Data Engineering (ICDE ’05).
Tokyo, Japan: IEEE, Apr. 2005.

[35] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes,
“Hibernator: Helping disk arrays sleep through the winter,” in
Proceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP ’05). Brighton, UK: ACM, Oct. 2005.


