Logan: Automatic Management for Evolvable,
Large-Scale, Archival Storage

Mark W. Storer, Kevin M. Greenan, lan F. Adams Kaladhar Voruganti
Ethan L. Miller, Darrell D.E. Long NetApp
Storage System Research Center Kaladhar.Voruganti@netapp.com

University of California, Santa Cruz
{mstorer, kmgreen, iadams, elm, darf@lcs.ucsc.edu

Abstract—Archival storage systems designed to preserve archival data, high cost is one of the biggest obstacles to
scientific data, business data, and consumer data must gpplying traditional storage techniques to design systems
maintain and safeguard tens to hundreds of petabytes of 1, hoyse archival data. Long-term storage systems should

data on tens of thousands of media for decades. Suchb - . h o all th i £ all
systems are currently designed in the same way as higher- € inexpensive enough to aflow the preservation or a

performance, shorter-term storage systems, which have a data thatmight eventually prove useful.
useful lifetime but must be replaced in their entirety via In contrast to traditional storage systems, which are

a “fork-lift” upgrade. Thus, while existing solutions can typically more concerned with scalability in performance
provide good energy efficiency and relatively low cost, 544 capacity, an archival storage system designed for

they do not adapt well to continuous improvements in | lived dat t | di . .
technology, becoming less efficient relative to current téc ong-lived data must scale over many dimensions, In-

nology as they age. In an archival storage environment, this cluding time, vendors and technologies [6]. The_goal
paradigm implies an endless series of wholesale migrations therefore, is to move away from an endless series of

and upgrades to remain efficient and up to date. migrations and “fork-lift” upgrades, to a continuously
Our approach, Logan, manages node addition, removal, g\o|ying system. To realize this goal, we are developing

and failure on a distributed network of intelligent storage p t that ists of a distributed net
appliances, allowing the system to gradually evolve as ergamum, a system that consists or a distributed net-

device technology advances. By automatically handling Work of up to 16-1¢ ener_gy-efficient storage d_evices,
most of the common administration chores—integrating calledtomes, that communicate over a commodity Eth-

new devices into the system, managing groups of devicesernet backplane [26]. While these devices can operate
that work together to provide redundancy, and recovering jyqependently, their full potential is realized when they

from failed devices—Logan reduces management overhead cooperate in inter-device redundancy arouns to provide
and thus cost. Logan can also improve cost and space P y group P

efficiency by identifying and decommissioning outdated data reliability and ensure data longevity. Since the stor-
devices, thus reducing space and power requirements for age nodes are intelligent, each device contains special-
the archival storage system. ized software that acts as an abstraction layer between
the system, and the device’s underlying hardware. This
flexibility provides the potential for an adaptable system
The ability to store and maintain massive quantitiethat changes gradually with technology; while individual
of data is becoming increasingly important, as scientistssomponents may change, the overall system evolves
businesses, and consumers are increasingly aware of ginacefully.
value of archival data. Scientists have long attemptedAlthough a fully distributed system is well-suited
to preserve data archivally, though such efforts hate an evolvable design, it introduces the problem of
sometimes fallen short. In the business arena, datenaging the global state of a fully decentralized system.
preservation is often mandated by law [1,17], and daRecent work has made great strides towards efficiently
mining has proven to be a boon in shaping busineaggregating data over very large networks of distributed
strategy. For individual consumers, archival storage iodes [31,32]; however, these approaches may be in-
being called upon to preserve sentimental and historicalfficient in a system that could easily encompass mil-
artifacts such as photos, movies and personal dodions of nodes. A million-node distributed system must
ments. Unfortunately, traditional storage systems afacilitate nodes joining the system, manage placement of
not designed to meet the needs of long-term, archivdéta and redundancy information, handle node failure,
data [6]. Paradoxically, despite the increasing value ahd gracefully phase out nodes as they age. All of

|. INTRODUCTION

this must be done with no central point of failurefrom a variety of projects. In this section, we place
However, it is impractical for each node to maintaimur work in the context of existing work by presenting
global knowledge—keeping just 10 KB per node for eachn overview of relevant existing storage systems, and
of a million nodes would require 10 GB of storage pedistinguishing them from Logan by identifying their
node. Moreover, keeping that information current wouldrchitecture, intended workload, and cost strategy.
require far too many messages to be exchanged between

nodes. Instead, an archival system must allow nodesAo Distributed Communication

operate with partial knowledge of the whole system and ggcase distributed systems are composed of loosely

more cpmplete knowledge of a small part.) coupled, independent devices, system-wide communi-
Archival systems become more useful as their CoglLiion can be challenging. An extreme approach is
decreases, making energy efficiency an important gz nyrsuit of global awareness, in which a fully con-
pect of long-term storage. However, while some earligf 1o graph allows one-hop communications between
systems have ad_dressed energy efﬁuency [8’11’1§]1y two nodes [2,12,14]. Unfortunately, the per node
none have gxamn_ed hO_W opportunity costs affect forage overhead, and proliferation of messages with
system over its lifetime. Since drive capacity, _real estaffiese strategies make them suitable for only relatively
values and power costs are always increasing, systgfj, systems. Some systems have sought efficiency
efficiency must be measured against what is curreniying through the use of randomization, but even these
achievable, not simply what wasnce achievable. For approaches incur relatively heavy costs [7, 28].

example, most Stofage systems assume that drives Arhformation management systems attempt to provide
replaceq dui todfqllure or Whole_sal_e system ”upgrad% tem level awareness, while still maintaining a decen-
suggesting that drives may remain in use well past ﬂf lized, distributed architecture. Some, such as SDIMS

point of being economically efficient. Further, proactiv%nd Shruti, utilize DHT algorithms as part of their foun-
decommissioning could also improve system reIiabiIit%g '

? Kh h hat th iouslv-held bath ation [31, 32]. These information management systems
earlier work nas snown t at the previous y-he atht gregate information about a distributed system'’s state,
failure model for hard drives may not be valid [24], an nd make it available in a way that does not collect all
that even small numbers of sector failures can PreéSa§fine information in a central point of failure. Another

overall drive failure [5]. afoproach to data aggregation is seen in Astrolabe, which

Because our overall goal is to. reduce the cost schews DHTSs in favor of a gossip-based approach [21].
long-term archival storage by reducing management co, fortunately, this approach focuses more on data sum-

we designed Logan to ado_lress _several major Cha"er_]gﬁ%ries that data aggregation and can be inefficient for
First, Logan must automatically integrate new nodes in me workloads

an existing system. This includes both making the system

aware of_the new device, and integrating the new deviceB’§ Sorage Systems

storage into redundancy groups to protect the data it

stores against device failure. Second, Logan must ensur@istributed, peer to peer architectures have been used
the correctness and longevity of data stored redundanifly Storage systems geared to a variety of workloads.
across nodes in the face of changing device membershfpgan, which is designed to run on a Pergamum-style
and failures. Third, Logan should strive to keep powetchival storage architecture [26], relaxes some per-
and other ongoing costs as low as possible by monitorirf@fmance criteria in exchange for economic efficiency,
a device’susefulness—the utility it provides compared Unlike many existing systems that attempt to achieve
to the resources it consumes—and decommissioning fpyformance levels on par with traditional, centralized
device when it has outlived its useful lifespan. storage [22,23].

The remainder of the paper is organized as follows. Logan is designed for a fully distributed architecture
Section Il places Logan within the context of existingVith no need for specialized nodes and central reposito-
research. Next, Section Ill provides an overview of outes of information. In long-term storage scenarios, cen-
current design. Finally, in Section IV we discuss whertalized points of failure can compromise data longevity.

we plan to focus our future efforts; we conclude thEOr example, Venti, which can store archival data on
paper in Section V. removable media, utilizes a centralized index [20]. Un-

fortunately, while this index can be rebuilt by reading in
Il. RELATED WORK partial indices stored on media, the bottleneck of media
In designing Logan to meet the goals of energyreaders makes this a prohibitively lengthy procedure as
efficient, reliable, archival storage [6], we used conceptwerall data size increases to hundreds of petabytes and

beyond. Similarly, the Google File System is a semis
distributed system that utilizes master nodes. Howeveg,
as it was not designed for long-term archival data, if | CCTT0 - | T - |- CTTT I {-ooeeeeee e ‘R
avoids the recovery problem by relaxing consistency argl

longevity constraints [9]. 2 I:H:':. ﬂ:ﬁ:. : H;H;. @ 2

Energy efficiency is an area that many designs have |

explored in pursuit of cost savings. Some reports state oo

that commonly used power supplies operate at only 65—L_{,/,T\‘,_) L_{/T\)_) L_{/?\‘,_) (/T\) L_{/T\‘,_)

75% efficiency, representing one of the primary culprits

of excess heat production, and contributing to coolingg- 1. Overview of Logan running a distributed network ofides.

Gemands that sccount for up o 603 of dat-centEs S o Dot CIoNGEE il e o wecor

energy usage [10]. The development of Massive Arraysh internal parity (dark grey) and external parity.

of Idle Disks (MAIDs) generated large cost savings by

leaving the majority of a system’s disks spun down [8Using a high number of low powered processors yields

Further work has expanded on the idea by incorporatiggiergy savings versus a few high powered processors

strategies such as data migration, the use of drives tif@tting processor voltage in half results in half the clock

can spin at different speeds, and power-aware redwipeed but one fourth the power consumption). Third, an

dancy techniques [16, 18, 19, 29, 33, 35]. inexpensive node can be treated as an indivisible entity;
Finally, a number of projects have sought to yieldf any part of the node fails, the entire node is discarded

cost savings from improved management techniques [8d replaced. This reduces the management overheard

IBM’s Intelligent Bricks project utilizes intelligent sto associated with locating and replacing individual com-

age appliances in liquid cooled rack designed for velgonents.

high device density [30]. Unfortunately, the design in- While each device is independent and actively ensures

tentionally forgoes accessibility of nodes as a trade dife longevity of its own data, nodes also cooperate in

for higher density. In a long-term scenario, this impliegedundancy groups to provide system wide data relia-

that eventually failed nodes will consume floor spacbi"ty. Data in each device is divided into fixed sized

while providing no utility. Others, such as Sun’s Honblocks, and blocks are grouped into fixed sizgments.

eycomb project, trade energy efficiency for managemeélit @ large archival system, data failures will be quite

gains [27]; in some scenarios, as many as sixty diskgmmon, and thus a “one size fits all” approach to
could be involved with a single write. reliability is excessively wasteful. Figure 1 illustratibe

two-level reliability model used in Pergamum [26], the
system on which Logan runs. First, each device survives
The system we envision is driven by a workload thahedia faults by utilizing block-level erasure coding over
exhibits read, write and delete behavior that differs fromegments [4]. Second, distributed RAID techniques are
typical disk-based workloads, providing both challengassed over groups of segments to survive the loss of
and opportunities. The workload is write-heavy, motia device [25]. Since heterogeneity is inevitable in an
vated by regulatory compliance and the desire to saggolvable system, device capacity will vary between
any data thamight be valuable at a later date. Readsappliances. Thus, unlike a simple RAID system where
while relatively infrequent, are often part of a query oall drives are the same size, a device can contribute
audit and thus are likely to refer to data that is temporalkegments to more than one redundancy group in order
correlated. Similarly, data being deleted are likely teo utilize all of its local storage capacity.
exhibit a temporal relationship since retention policies
often specify a maximum data lifetime. This workload™ Management Groups
resembles traditional archival storage workloads [20, 34] Because global knowledge becomes increasingly in-
adding deletion for regulatory compliance. feasible as the number of nodes increases, devices are
We are currently developing Logan, a managemeatranged intomanagement groups. Each management
layer that runs atop the distributed network of inexgroup chooses one or more group leaders that oversees
pensive, independent storage appliances provided &gministration for a given term. At a system wide
Pergamum [26]. This architecture provides a number tdvel, the management groups are arranged in a logical
advantages in a long-term archival scenario. First, eablipercube because this topology offers a number of
device acts as an abstraction layer to the underlyitgnefits. First, it offers efficient communications routing
media, easing transitions to new technologies. Secoks shown in Figure 2, message routing occurs in a

IIl. PROPOSEDDESIGN

source group

(000)

Fig. 2. Eight management groups arranged in a hypercube of))

dimension 3. Nodes involved in routing from group 2 to 5 showfrid. 3. When parenP (node 2), produces a chil@ (node 6), it

in white. Routing is done ifO(lg n) time, since each hop brings the Provides the child with a list of its grandparer@l andG2 (nodes 0

message one bit closer to its destination. and 3). The child then calculates which, if any of its bitwissghbors
it needs an introduction to from its grandparent.

CoePvGli=N1=100<C
CePvG2=N2=111

destination group

hierarchical fashion, with messages first routed to thfistributed splitting; when bucket splits, it passes the
destination group, and finally routed within the destinaoken to bucket+ 1 mod 2.
tion group. Second, management groups grow until theywhen a group splits, it must establish connections
reach a certain size, and then are split into two groupgith its bitwise neighborsN, in order to preserve the
This technique for incremental growth in the number dbgical hypercube. One such connection is from the
management groups is well suited to the construction gfild, C, to its parentP. This connection is easy to make.
hypercubes. Additionally, it must establish a connection with each
The system begins with a single management grougxisting group whose name is exactly one bit different
Nodes entering the system are added to this group untitlitan its own name. To perform this, the parent supplies
reaches a predetermined saturation point, at which pothe child with a list of its grandparent§&. For each
it splits into two groups with an average of half thegrandparent, the child calculat€ssPvG=N. If N <C,
membership each. Membership and splitting is basédenC asksG to make an introduction. IN > C, then
on the LH* family of distributed data structures [15].that bitwise neighbor has not yet been formed and no
This approach offers several benefits. First, these ddtather action is required. This process is illustrated in
structures do not require a globally consistent view iRigure 3.
order to function properly. This property is especially _ o
important because, in a system of the scale we envisidh, Device Lifetimes
tight consistency expectations are unrealistic. SecondWhen a new node enters the system, it performs a
they allow the system to gracefully scale from a smaliroadcast to nearby nodes to locate other Logan devices;
system of just a single management group to a lar@gere is no need for the new node to broadcast to all (or
system with thousands. Third, since group membershigen most) of the nodes in the system. The devices that
is calculated instead of statically assigned, a node cesspond are able to provide the new node with their view
be located from its name alone. of the global system state, which in turn is used by the
LH* utilizes two variables,n and i, to coordinate new node to calculate its management group. Once a
all of operations. First, system routing utilizes theseew node has calculated its management group, it asks
variables in the hash function used to determine whidbr further assistance in locating a fellow member of
management group a node belongs to. In the event tlitatgroup. Eventually the new node is introduced to the
a node is routed using an older versionmandi, the current group leader.
selected bucket will route the message to the correctOnce a node has become member of the system, it is
bucket, as well as update the source with the up tnanaged through its entire lifespan, progressing through
date variables values. Seconmdacts a token allowing three stateSPENDING, CONTRIBUTING, and EXPIRED.

device
failure

Contrib-
uting

X

of segments to those groups. The second aeeayery,
determines where data will be recovered to when a node
is lost. The final areapnaintenance, monitors the health

of the system and actively identifies nodes that are ready

to be decommissioned.

Each device in Logan maintains a list of named at-
tributes that describe that device. In addition to querying
the device for values, the system can also update the

integrate into

decommision
redun. group

burn-in failure

(infant mortality) Pending values. This can be used to reflect usage effects such
as the accelerated wear caused by drive spin-ups, or the
effects of batch correlated failures.

Remove Node Install Node In order to make good management decisions, we

are exploring the use of heuristic algorithms such as

Fig. 4. Nodes in the system exist in one of three states. A. . .
functioning node that is not yet part of any redundancy gsoispin simulated annealing [13]. These algorithms attempt to

the initial, PENDING State.CONTRIBUTING nodes have been integratedSOIve an optimization problem by utilizing heuristics
into redundancy groupsXPIRED nodes have either failed or beento repeatedly perform minor modifications to a partial

decommissioned, and can be removed from the system. solution. To this end, these algorithms utilize three main
components. First, the solution spacé,is the space
all possible solutions from which the answer will be
awn. Second, the neighbor functiod, heuristically
0oses a new solution that is “close” to the current
solution in the solution space. Finally, a objective func-
tion, P, measures the “goodness” of a solution, and is the
\{]alue that the heuristic algorithm attempts to minimize
aximize.

The first statePENDING, indicates a node that is alive on
and known to the system, but is not yet a member of a@‘}
redundancy groups. The second StateNTRIBUTING, r
denotes a live node that is member of one or mo
redundancy groups. The third statxPIRED, indicates
that a node has failed or been decommissioa&@IRED
nodes can be physically removed from the system;
other nodes are removed, the system handles the remdVal
as a failure. Figure 4 illustrates these three states and thélanagement group leaders collect the attribute lists
transitions between them. from the members in their groups in order to develop a
A newly installed node is not immediately integrated;tatistical understanding about the group’s devices. This
into redundancy groups, but rather is placed into tHaformation is used during the administrative functions
PENDING state. This design provides a number of beri© identify expensive devices, in terms of utility versus
efits. First, this allows the node to undergo a self-cheégsources consumed, without requiring administrator in-
and burn-in period in order to reduce the impact of infariRUt. For example, this approach can identify a group’s
mortality and batch correlated failures. Second, whenMost power-hungry device. Further, this approach can
is time to expand the available storage in the systefetermine how power-hungry that device is in compari-
Logan is able to make smarter management decisions¥ to the average of the group’s devices.
utilizing the devices in th@ENDING pool, as compared 1) Scale Out: For scale-out operations, each manage-
to an approach that immediately integrates every nodeent group maintains a list of its redundancy groups
as soon as it arrives. and the devices assigned to those groups. This list is
When Logan integrates a device into into one or mowdnsulted and updated based on two redundancy group
redundancy groups, that node enters¢loal TRIBUTING operations. First, Logan can form a new redundancy
state. In this mode, nodes store data, participate gmoup. Second, Logan can expand an existing redun-
redundancy group activities, and answer read and wriiancy group. The latter strategy is possible because
requests. Eventually, as the node ages and its usefulnestundancy groups have a population range. Logan
decreases relative to newer nodes, it will increasingtjpoes not always fully populate new redundancy groups.
become a candidate for decommissioning. Rather, it creates partially populated groups that still
meet the system’s reliability criteria, thus allowing the
C. Management Tasks system to expand capacity, even when there are insuffi-
Management groups are tasked with a number ofent devices to create an entirely new redundancy group.
administrative duties. The first of theseale out, deals For example, the system might require parity groups to
with expanding the capacity of the system. It involvebe of the formn+ 3 disks, where 6 n < 13. This would
the creation of redundancy groups, and the assignmeméan that a redundancy group would have a minimum

of 9 disks and a maximum of 16 disks, and be able tms soon as the heuristic completes, maintenance chores
grow from 9 to 16 gradually over time if needed. can handled opportunistically. A device that has been
At the device level, each management group maintaiitentified for decommissioning can wait until a scrub-
a list of of its devices and their unassigned, or free, seging event or recovery event occurs in order to defray
ments. From this pool, Logan can assign device segmetiie power costs associated with a wholesale migration of
to redundancy groups from two primary sources. Firsh nodes complete contents. An important factor that en-
Logan can utilize previously unassigned segments fromables this opportunistic approach is that the optimization
device in theCONTRIBUTING state. Second, it can utilize that maintenance seeks to achieve are not critical to data
segments from @ENDING device. Naturally, this would safety. When the unit being decommissioned activates,
cause the device to transition to tlBONTRIBUTING it can check to see if the units slated to takes its place in
state. redundancy groups are still available. If they are not, the
Logan monitors the system, and performs a scale adggcommissioning can be cancelled, or new replacements
operation when it detects that available free space incan be chosen.
management group has dropped below a predetermined
low water mark. When this occurs, the management IV. FUTURE WORK
group performs a number of scale-out initialization steps. Current effort on Logan is focused on refining the
First, it determines which redundancy group are leskeleton, described in the previous section. Much of this
than fully populated. Second, it determines if the exwork is directed towards exploring the use of heuristic
isting groups offer sufficient scale-out room, or if newdlgorithms in making sound management decisions. Ad-
redundancy groups must be created. ditionally, we are exploring the behavior of the system to
2) Recovery: As with any storage system, and espéielp determine the correct size of management groups;
cially a long-term archival system, failure is inevitabletoo large and the group leaders are overwhelmed, too
Additionally, since the system must be cost efficiengmall and the resulting splitting results in unnecessary
it is not enough to simply recover data to the firsmanagement overhead. Finally, we are examining the
available free space. To address this problem, Logan u$@st-strapping problem; while the system is designed
similar heuristic search techniques to determine whei@ scale up to hundreds of thousands of nodes, it must
data should be recovered to in the event of a devideevitably start with one.
failure. Further along in our research plans, we plan on
An instance of solution space is a mapping of seg@xamining how best to deal with large-scale disasters
ments to redundancy groups. At each iteration of trnd network partitions. In a long-term storage system,
algorithm, some subset of free segments are mappedhese sorts of events are inevitable, and must be survived
the segments of the failed device. The primary constraigtacefully, and with a minimum of needless energy
to enforce during recovery is that each member of expenditures. Many such events, such as a failed switch
redundancy group is a different device. causing a network partition, are benign in the sense
3) Maintenance: The goal of maintenance is to deterthat data may still be safe, it is simply unreachable.
mine if there is a management group configuration thetowever, the system’s reaction in such a scenario could
can offer better service for the same or lower resourogadvertently cause more harm than good; the system
consumption. may try and immediately rebuild all data that it could
As in previous management group operations, the statet contact.
of the system consists of a mapping of device free As previously discussed, large archival systems are
segments to redundancy groups. However, in the casell suited to recovery procedures that allow the re-
of maintenance, the redundancy group list consists gponse to be scaled to the size of the problem. Currently,
all the existing redundancy groups. At each iterationye utilize a two level scheme of intra-device and inter-
devices that are likely to be decommissioned based davice reliability. A third level, across geographically
their expected lifetime or high energy costs per segmetiverse sites, would be useful in order to protect data
are randomly swapped with available segments. F&om natural disasters or other other “act of god” failures.
this operation, a valid solution enforces the constraint The dependency list of a given device describes the
that a device can only be decommissioned if all of iteodes that contribute to the reliability of a given node’s
committed segments have a replacement, and that thds¢a. Put another way, if a device fails, all of the
replacements conform to the standard redundancy grodgvice’s in the failed device’s adjacency list will need
constraints. to contribute data during the recovery process. Thus,
Unlike recovery and scale-out which are performethe size of the dependency list could have considerable

impact on data reliability, and during recovery, energy
consumption. A large redundancy group allows greatey;
parallelization during recovery, and implies greater di-
versity in the redundancy group’s devices. In contrast &/
smaller adjacency list requires less devices to spin up
during recovery. Considering these and other potential
tradeoffs, an understanding of how adjacency affects]
reliability and power consumption could allow us to
tailor our optimization methods to their ideal size.
Another intersection of reliability and power can bel
seen in a failed devices recovery schedule. That is, the
amount and ordering of parallelization that occurs during
rebuild. With a fuller understanding of power use during(®!
rebuild Logan could determine not only the placement
of recovered data, but also the order that recovery should
proceed. This area is complicated by the affect of verg/6
transient system states. For example, device populati r?
changes much slower than the list of currently spun up
devices. 1

V. CONCLUSIONS

While archival systems are well served by a distributeds;
architecture, such a design introduces the management
challenges of heterogeneity in an evolving and agin
system. Further, as part of a comprehensive cost strategy,
such a system should continuously seek ways to maxi-
mize the utility it offers for the resources it is consumin 0

To this end, we are developing Logan, a management
layer that runs atop, a distributed network of energy-

.. . . . 1]
efficient, intelligent storage appliances [26]. Nodes a)r{é
arranged in redundancy groups which allows data to
be recovered from a lost node. To manage redundari¢l
groups, and to facilitate system-wide communication,
Logan arranges devices into management groups. Fur-
ther, Logan collects information about the nodes i3]
each management group and uses this data to make
intelligent management decisions. Logan helps contrak
archival storage costs by automating a number of com-
mon administrative tasks, and opportunistically decom-
missioning of old hardware. [15]

ACKNOWLEDGMENTS
[16]

We would like to thank our colleagues in the Storage
Systems Research Center (SSRC) who provided valuable

REFERENCES

“Health Information Portability and Accountability At 104th
Congress, Oct. 1996.

I. Abraham and D. Dolev, “Asynchronous resource discgve

in Proceedings of the Twenty-Second Annual Symposium on
Principles of Distributed Computing (PODC 2003), Boston, MA,
Jul. 2003, pp. 143-150.

E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch, “Hippodrome: running circles around storage
administration,” inProceedings of the 2002 Conference on File
and Sorage Technologies (FAST), Monterey, CA, Jan. 2002.
L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy,
J. Schindler, “An analysis of latent sector errors in diskes,”
in Proceedings of the 2007 SGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, Jun. 2007.

L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “An analysis of
data corruption in the storage stack,” Rnoceedings of the 6th
USENIX Conference on File and Storage Technologies (FAST),
Feb. 2008, pp. 223-238.

M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulo§)d&.
niatis, T. Giuli, and P. Bungale, “A fresh look at the reliétli of
long-term digital storage,” ifProceedings of EuroSys 2006, Apr.
2006, pp. 221-234.

B. S. Chlebus and D. R. Kowalski, “Gossiping to reach con-
sensus,” inProceedings of the 14th ACM Symposium on Parallel
Algorithms and Architectures (SPAA), Winnipeg, Manitoba, Aug.
2002, pp. 220-229.

D. Colarelli and D. Grunwald, “Massive arrays of idle kis
for storage archives,” irProceedings of the 2002 ACM/IEEE
Conference on Supercomputing (SC '02), Nov. 2002.

and

] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file

system,” inProceedings of the 19th ACM Symposium on Operat-
ing Systems Principles (SOSP '03). Bolton Landing, NY: ACM,
Oct. 2003.

] Green Grid Consortium, “The green grid opportunity,- de

creasing datacenter and other IT energy usage patterns,”
http://www.thegreengrid.org, The Green Grid, Feb 2007.

A. Guha, “Solving the energy crisis in the data centeings
COPAN Systems’ enhanced MAID storage platform,” Copan
Systems white paper, Dec. 2006.

M. Harchol-Balter, T. Leighton, and D. Lewin, “Resoardis-
covery in distributed networks,” iRroceedings of the Eighteenth
ACM Symposium on Principles of Distributed Computing (PODC
1999), Atlanta, GA, May 1999, pp. 229-237.

S. Kirkpatrick, C.D. Gelatt, Jr., and M. Vecchi, “Optimation by
simulated annealing,Science, vol. 220, no. 4598, pp. 671-680,
1983.

S. Kutten, D. Peleg, and U. Vishkin, “Deterministic oeisce dis-
covery in distributed networks,” ifProceedings of the 13th ACM
Symposium on Parallel Algorithms and Architectures (SPAA),
Crete Island, Greece, Jul. 2001, pp. 77-83.

W. Litwin, M.-A. Neimat, and D. A. Schneider, “LH*—a sta
able, distributed data structureéCM Transactions on Database
Systems, vol. 21, no. 4, pp. 480-525, 1996.

D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-
loading: Practical power management for enterprise ségtag
Proceedings of the 6th USENIX Conference on File and Storage
Technologies (FAST), Feb. 2008, pp. 253-267.

feedback. This research was supported by the Petasgalg M. G. Oxley, “(H.R.3763) Sarbanes-Oxley Act of 2002 &t=

Data Storage Institute under Dept. of Energy award DEIS]
FC02-06ER25768, and by the industrial sponsors of the
SSRC, including Los Alamos National Lab, Lawrence
Livermore National Lab, Sandia National Lab, Dat&!®]
Domain, Hewlett-Packard Laboratories, IBM Research,
LSI, NetApp, Seagate, and Symantec.

2002.

E. Pinheiro and R. Bianchini, “Energy conservationhtgiques
for disk array-based servers,” Proceedings of the 18th Inter-
national Conference on Supercomputing, Jun. 2004.

E. Pinheiro, R. Bianchini, and C. Dubnicki, “Exploignredun-
dancy to conserve energy in storage systems,Prioceedings
of the 2006 SSGMETRICS Conference on Measurement and
Modeling of Computer Systems, Saint Malo, France, Jun. 2006.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

S. Quinlan and S. Dorward, “Venti: A new approach to arah
storage,” inProceedings of the 2002 Conference on File and
Sorage Technologies (FAST). Monterey, California, USA:
USENIX, 2002, pp. 89-101.

[29]

R. V. Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A30]

robust and scalable technology for distributed system toong,
mangement, and data miningkCM Transactions on Computer
Systems, vol. 21, no. 2, pp. 164-206, May 2003.

A. Rowstron and P. Druschel, “Storage management aokirg
in PAST, a large-scale, persistent peer-to-peer storaltity,utn
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP '01). Banff, Canada: ACM, Oct. 2001, pp.
188-201.

Y. Saito, S. Frglund, A. Veitch, A. Merchant, and S. Sgen
“FAB: Building distributed enterprise disk arrays from corad-
ity components,” inProceedings of the 11th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2004, pp. 48-58.

B. Schroeder and G. A. Gibson, “Disk failures in the remirld:
What does an MTTF of 1,000,000 hours mean to you?” i
Proceedings of the 5th USENIX Conference on File and Storage
Technologies (FAST), Feb. 2007, pp. 1-16.

M. Stonebraker and G. A. Schloss, “Distributed RAID—ewn
multiple copy algorithm,” inProceedings of the 6th International
Conference on Data Engineering (ICDE '90), Feb. 1990, pp.
430-437.

M. W. Storer, K. M. Greenan, E. L. Miller, and K. Vorugant
“Pergamum: Replacing tape with energy efficient, reliablisk-
based archival storage,” ifProceedings of the 6th USENIX
Conference on File and Sorage Technologies (FAST), Feb. 2008.
Sun Microsystems, “Sun StorageTek 5800 system athite,”
White paper, Dec. 2007.

D. J. Watts and S. H. Strogatz, “Collective dynamics shall-
world’ networks,” Nature, vol. 393, no. 6684, pp. 440—442, Jun.
1998.

(31]

[32]

n

(33]

[34]

[35]

C. Weddle, M. Oldham, J. Qian, A.-l. A. Wang, P. Reiherda
G. Kuenning, “PARAID : A gear-shifting power-aware RAID/ i
Proceedings of the 5th USENIX Conference on File and Sorage
Technologies (FAST), Feb. 2007.

W. W. Wilcke, R. B. Garner, C. Fleiner, R. F. Freitas, R. A
Golding, J. S. Glider, D. R. Kenchammana-Hosekote, J. L.
Hafner, K. M. Mohiuddin, K. Rao, R. A. Becker-Szendy, T. M.
Wong, O. A. Zaki, M. Hernandez, K. R. Fernandez, H. Huels,
H. Lenk, K. Smolin, M. Ries, C. Goettert, T. Picunko, B. J. Ryb
H. Kahn, and T. Loo, “IBM Intelligent Bricks project—petateg
and beyond,1BM Journal of Research and Devel opment, vol. 50,
no. 2/3, pp. 181-197, 2006.

P. Yalagandula and M. Dahlin, “A scalable distributetfor-
mation management system,” Rroceedings of the Conference

on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SGCOMM '04). Portland, OR:
ACM Press, Aug. 2004, pp. 379-390.

P. Yalagundula and M. Dahlin, “Shruti: A self-tuningearchical
aggregation system,” ifProceedings of the First International
Conferece on Sdlf-Adaptive and Self-Organizing Systems (SASO
2007), Boston, MA, Jul. 2007, pp. 141-150.

X. Yao and J. Wang, “RIMAC: a novel redundancy-baseddrie
chical cache architecture for energy efficient, high penfamce
storage systems,” iRroceedings of EuroSys 2006, Oct. 2006, pp.
249-262.

L. L. You, K. T. Pollack, and D. D. E. Long, “Deep Store:
An archival storage system architecture,” Pnoceedings of the
21st International Conference on Data Engineering (ICDE ’05).
Tokyo, Japan: IEEE, Apr. 2005.

Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes,
“Hibernator: Helping disk arrays sleep through the wifiter,
Proceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP '05). Brighton, UK: ACM, Oct. 2005.

